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Rev iews  of the p r e s e n t  s ta te  of  wind-wave invest igat ion can be found in many  p a p e r s  (for 
ins tance ,  [1, 2]). A method for  solving the p rob l em of motion of f in i te-ampl i tude  in te rna l  
waves  was p roposed  in [3]. However ,  the a lgor i thm used the re  did not p rove  useful  in the 
case  of wind waves .  In connection with this ,  we p ropose  he re  a new a lgor i thm.  The ca l -  
culation r e s u l t s  a r e  in a g r e e m e n t  with data obtained in observ ing  actual  wind waves .  

w 1. Plane mot ion of  two incompress ib l e ,  nonviscous,  and nonmixing fluids with different  densi t ies  in a 
g rav i ta t iona l  field is  contemplated.  The flow is  a s sumed  to be continuous e v e r y w h e r e  in the plane,  potential  
at points away f r o m  the boundary line sepa ra t ing  the fluids, and per iod ic  in the hor izontal  direct ion.  

A s s u m e  that  the axis  of ord ina tes  of  the x, y Ca r t e s i an  coordinate s y s t e m  is  d i rec ted  ve r t i ca l ly  upward 
(Fig. 1). In the upper  D 1 and the lower  D 2 flow regions ,  the fluid ve loc i ty  V=(Vx,  Vy) sa t i s f i e s  the equations 

div V = O, rot V = O, (x, y) ~ L, (1.1) 

the periodicity condition 

�9 V(x + ~, y, t) = V(x, y, t), (x, y) ~ L (1.2) 

and the following boundary conditions: F low-ve loc i t ype r tu rba t i ons  a r e  damped with inc reas ing  dis tance f rom 
the boundary  line L, 

v (z, v, t ) _ + / ( - v ~ . - u ,  o), v-~  + ~o, 
( ( v ~  - -  u, 0), y - ) - -  co, (1.3)  

the fluids do not flow a c r o s s  the boundary line, 

Vj .v ---- w.v, j = t ,  2, (x, y) ~ L, (1.4) 

and the Lap lace  law holds for the hydrodynamic  p r e s s u r e  drop a c r o s s  the boundary line, 

p, - -  p~ = ~k, (x, y) E L, (1.5) 

where  X is  the wavelength;  t is  the t ime;  v~o = const is half  the wind veloci ty;  u = const; v is the unit vec to r  of 
the no rma l  to L, outward for  the domain Dz; w is the ve loc i ty  of points of the l ineL;  Vj  and pj a re  the l imit ing 

y. -o-~,'-u 

Fig. i Fig. 2 
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va lues  of  the  ve loc i ty  V and the p r e s s u r e  p, r e spec t ive ly ,  in approaching  L f r o m  the domain Dj, j = 1, 2; # is  
the su r face  tens ion  coefficient;  and k is  the  curva tu re  of  the boundary line; k> 0 if  the domain  D 1 is convex in 
the neighborhood of the point under considera t ion .  

I t  i s  a s s u m e d  tha t  the ini t ial  ve loc i ty  field 

V(x, y, 0) = V0(x, y) (1.6) 

is  known and that  i t  s a t i s f i e s  conditions (1.1)-(1.4). 

The  p r o b l e m  (1.1)-(1.6) is  nonl inear ,  s ince condition (1.5) is  nonl inear  with r e s p e c t  to the flow veloci ty  
field, while the boundary line L and the ve loc i ty  with which it moves  w" v a r e  unknown for  t>  0. 

w 2. A s s u m e  that  the curve  L is  smooth  and that  i t  does not have s ingular  points .  We introduce the quan-  
t i ty  v = (Vx, Vy) by means  of  the equation 

t(t) 

v = - -  iv  u = - -  u + - ~  (a,  t) etg-~- [~ (s, t) - - g  ((r, t ) l d ~ ,  
0 

where  l is  the length of  the wave contour; s and ~ a r e  the a r c  a b s c i s s a s ;  the pos i t ive  d i rec t ion  of mo v emen t  
along the contour L is  that  for  which the domain D 1 s tays  on the left  (see Fig. 1); y ( s ,  t) = (V2-V 1) "T is  the 
intensi ty of the vo r t ex  sheet ;  1" is the unit v e c t o r  of the tangent to L, or iented  in the d i rec t ion of  i nc r ea se  in 
the a r e  a b s c i s s a ;  and ~ (s, t) =~ + iT is  the complex coordinate  of points of the boundary line. I t  is  a s s u m e d  
that  the functions y and 0 ~ / a  s, as  functions of the a r c  a b s c i s s a ,  a r e  continuous accord ing  to H~lder,  while 
the in tegra l  has  the  p r inc ipa l  meaning  of Cauchy. 

In der iv ing  the equations of  motion of an in terna l  wave,  in [3] the tangent ia l  component  w T = w- I" of  the 
ve loc i ty  of  i ts  points  was a s s u m e d  to be equal to wT = v .  v. In this case,  the equations have the s imples t  fo rm.  
However ,  the a lgor i thm for  the n u m e r i c a l  solution of these  equations composed  in [3] proved  to be inadequate 
for calculat ing the mot ion of wind waves  (where Voo ~ 0). This  is due to the fact  that,  in the course  of t ime,  
the calculat ion points  tend to concentra te  in one sect ion of the wind wave and thin out in another .  At tempts  to 
in t roduce in the  a lgor i thm a un i form red is t r ibu t ion  of calculat ion points along the wave contour did not improve  
the a lgor i thm,  s ince th is  p r o c e d u r e  i m pa i r ed  cons iderab ly  i t s  s tabi l i ty .  

This  t rend in the behav ior  of  the calculat ion points can be e l imina ted  by putting w T - 0. In this case ,  the 
equations of  wave mot ion a r e  de r ived  a s  in [3]. In this ,  we pas s  f rom the Euler ian a r c  a b s c i s s a  s E [0, /(t)] 
to the  Lagrang ian  v a r i a b l e  a E [ - ~ ,  ~ ] with a t ime  co r re spondence  between the points of the wave prof i le  given 
by 

,~(-~ (a, t), o~ (a, t ) ) =  ( v - v ) v ;  

we int roduce the fimction 

r(a,  t) = ~(s(a, t), t)] ga(a, t)[; 

i t  is a s s u m e d  that ,  a t  a t ime close to t = 0, the de~/ivatives OF~On and O3~/Oa 3 exis t  and a r e  continuous a c c o r d -  
ing to HUlder a s  functions of a Lagrang ian  va r i ab le .  Then the equations of  wave motion with r e spec t  to the 
functions F(a ,  t) and ~(a, t) a r e  given by 

f ~t (a, t) '-- ~ Im {;a (a, t)v(a, t)}; (2.1) 

sg 

I' t (a, t) -t-//  S Pt (~, t) R (a, tz, t )da ----- H (a, t), (2.2) 
n ~  
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where  

�9 S I' (cz, t) e t g - ~ - [ ~  (a,  t) - -  ~ (c~, t)] do~; v ( a ,  t) = - -  u-I-  
- - X  

K (a, ,~, t) -- ~--Im ~ (a, t) ctg T [; (a, t) - ; (~, O] ; 

g Y (r ~t (a) - -  ~t (e) d e  + H(a,  t) = 2RRo ~ a ~ _ ,  

0 ( 2~k ?z 

where  pj  is the dens i ty  of  the fluid in the domain Dj, j =1, 2; the p a r a m e t e r  R = ( p 2 - p l ) / ( p 2  +Pl); g is the a c -  
ce le ra t ion  due to gravi ty ;  and u~ - -  iv v = v~a/[~al. 

The init ial  p r o b l e m  (1.1)-(1.6) is  equivalent  to the Cauchy p rob l em for  the s y s t e m  of in tegrodif ferent ia l  
equations (2.1), (2.2) with the init ial  data 

r(a,  0) = ro(a), S(a, 0) --  So(a), (2.3) 

where  the functions F 0 and [0 a r e  ass igned.  The function F 0 mus t  sa t i s fy  the condition 

.1" Fo (a) da = 2 v ~ .  

I t  should be noted that  s y s t e m  (2.1), (2.2) d i f fe rs  cons iderably  f rom the s i m i l a r  s y s t e m  in [3]. 

The n u m e r i c a l  solution of p r o b l e m  (2.1)-(2.3) is  obtained as  in [3] by using the Tay lo r  formula ,  

r(a, t + At) = r(a, t) + rt(a, t)At + rtt(a , t)(At)2/~: (2.4) 

~(a, t + At) = ~(a, t) q- St(a, t)At -4- ~tt(a, t)(At)2/2 -1- ~ttt(a, t)(At)a/6. (2 .5)  

The value of the in te rva l  At  ensur ing  the s tabi l i ty  of calculat ions is chosen by p e r f o r m i n g  t r i a l  calculat ions 
with d i f ferent  in t e rva l s  At  until  the in te rva l  is  s m a l l e r  than a cer ta in  c r i t i ca l  value A t , .  The following in-  
va r i an t s  of  s y s t e m  (2.1), (2.2) a r e  used for  checking the calculation accuracy :  

i" r (~, t) da = 2 t ~ E ,  ~ v (a, t) ~a (a, t) da = - -  uL. 
Ag _~ 

In o rde r  to s u p p r e s s  s h o r t - w a v e  ins tabi l i ty  [3], smoothing-out  is  used for  each in te rva l  of  the calculated values  
of  the functions F, ~t '  I t '  ~tt, Ftt, and ~ttt" In this ,  the smoothed-out  value of the function at  a cer ta in  point is 
unders tood as  the value a t  this  point of a t h i rd -power  polynomial  which app rox ima te s  the function with r e s p e c t  
to i ts  va lues  a t  the given point and six neighboring points ( three on the left  and three  on the right) accord ing  
to the method of  l ea s t  squa re s .  

The p r o g r a m  rea l i z ing  this a lgor i thm has been composed in the A L ' F A - 6  language for  the BI~SM-6 
compute r .  Fo r  60 calculat ion points on the wave contour, the calculation of a single s tep r equ i r e s  16 sec  of 
compute r  t ime  in computation based  on Eqs.  (2.4) and (2.5), and 11 see  in computation without an allowance 
for  the de r iva t ives  Fit and ~ttt- 

w 3. We shal l  p rov ide  examples  of  calculat ions of wind waves  a t  the w a t e r - a i r  in te r face  (R = 0.9975 i.  [n 
the cases  cons idered  below, k/ (2v ) and k/(27rv~) a r e  used as the units of length and t ime.  The d imens ion less  
p a r a m e t e r s  F r = g X / ( 2 v v ~ )  and W = # / ( p l +  P2) {X/(2w)} -1 v ~  a r e  the Froude and Weber  number s .  The constant 
u is a s s igned  so that  the x, y coordinate  s y s t e m  moves  at  the ve loc i ty  of  a wave with an inf in i tes imal  amp l i -  
tude. The init ial  ve loc i ty  field is  chosen in cor respondence  with the l inear  theory  [4]. 

Grav i ta t iona l  Wind Wave. Var i an t  1: FR = 0.2556; u=0.4975; ~(a, 0 ) = a +  i0.2w sin a;  F(a,  0 )=2+  0.199v- 
s i n a .  Va r i an t  2: F r = 0 . 6 4 ;  u=0 .2 ;  ~(a, O)=a+ i0.1~ s i n a ;  F(a, 0)=2+  0.047r s i n a .  The calculat ions a r e  p e r -  
fo rmed  for  the t ime  up to t=  4 with in te rva l s  At=  1/10 in both va r i an t s .  The wave shapes  for different  ins tants  
of  t i m e  a re  given in Figs .  2 and 3 (var iants  1 and 2, respec t ive ly) ,  where  the wave peaks  and troughs a re  
connected by dashed s t r a igh t - l i ne  s egmen t s .  The wave evolution is  character izecl  by the following fea tures :  
The wave s y m m e t r y  is  d is turbed;  the windward nodes move at the ve loc i ty  of in f in i tes imal -ampl i tude  waves;  
the l eeward  s lopes  of waves  become s t eepe r ,  while the windward s lopes  become f la t te r .  The la t t e r  t rend is 
m o r e  s t rongly  pronounced in the va r i an t  with s t e e p e r  waves .  I t  should be mentioned that,  in the f i r s t  va r i an t  
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(in cont ras t  to the second variant) ,  the s teepness  and veloci ty of a wave affecting the stabil i ty of i ts evolution 
lie outside the wave slope vs wave ve loc i ty  d iagram which holds for actual  waves ([1], Fig. 6.4-2). The above 
pecu l ia r i t i es  in the evolution of wind waves a r e  in ag reement  with the resu l t s  of observat ions  in nature.  

For  values  in the range 0 < F r <  1 / R - R ,  a t r e n d o p p o s i t e t o  that desc r ibed  above p reva i l s :  The leeward 
wave slopes become f lat ter ,  while the windward slopes become s teeper .  

Capi l lary Wind Wave. Var iant  3: W=3.995; u = - l ;  ~(a, 0 )=a+  i0 .2r  sin a; r (a ,  0)= 2 - 0 . 4 ~  sin a. The 
calculations a r e  pe r fo rmed  for  the t ime up to the moment  t = 1 for the in terval  At= 1/90 without taking into 
account  the der iva t ives  Fit  and ~ttt* The wave evolution shown in Fig. 4 (the wave peaks and troughs a re  also 
connected by dashed s t ra ight - l ine  segments)  is s imi l a r  to the evolution of  gravi ta t ional  waves.  However,  i t  is  
a lso cha rac t e r i zed  by the fact  that  the wave tops become f la t ter  and the t roughs deeper .  

With a reduct ion in the Froude and Weber  numbers  in compar ison with those indicated in var ian ts  1-3, 
the wave evolution is  r e ta rded ,  while the cr i t ica l  in terval  At ,  remains  a lmos t  unchanged. The la t te r  leads to 
the fact  that,  in calculating r ipple waves,  the ro le  of the nonlinear effects  caused by the f ini teness  of the wave 
amplitude is not revea led  even if  a large amount  of computer  t ime is used. This means that  the l inear  theory  
adequately desc r ibes  the motion of f ini te-ampli tude r ipple waves.  
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2. 
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L I Q U I D  W I T H  A H I G H - V I S C O S I T Y  C O R E  IN A 

C O O L E D  C H A N N E L  

A .  S.  R o m a n o v  UDC 532.51:532.135 

Viscoplas t ic  liquids occupy an important  posi t ion among non-Newtonian liquids [1, 2]. The hydrodynamic 
s tabi l i ty  of the two-dimensional  Poiseui l le  flow of these  liquids was invest igated in [3, 4], The mechanical  
cha rac t e r i s t i c s  of v i s e . p l a s t i c  media  a re  de te rmined  by the d imensionless  rheological  equation, which r e l a t e s  
the s t r e s s  tensor  devia tor  ~ ij to the s t r a in  r a t e  t ensor  fij [1]: 

~ tl for V t o~j 2 l §  (1) 

where  ~t=ToL/#U is the p las t ic i ty  p a r a m e t e r ;  p is the p las t ic  dynamic v iscos i ty ;  T o is  the ul t imate  shear ing 
s t r e s s ;  L is  the cha rac t e r i s t i c  dimension (half-width of the channel); and U is the cha rac t e r i s t i c  veloci ty.  Due 
to the exis tence  of the ul t imate  shear ing  s t r e s s  T O for  a v iscoplas t ic  liquid, zones where  the medium moves  
as  a quasisol id  body as  well  as v iscous  flow zones can fo rm in the flow of such a liquid through channels [2]. 

The d imens ionless  shear ing  s t r e s s  T as  a hmction of the dimensionless  shear ing ra te  5 for  unidimen- 
St .hal  she a r  flow of a v i s e ,  p las t ic  liquid (1) is shown in Fig. 1. The rheological  equation (1) is  approximate  
for many actual  liquids and the flow curve is  essent ia l ly  nonlinear for  low shear ing r a t e s  [5] (dashed curve in 
Fig. 1). The t he . l og i ca l  law is in this case wri t ten  conveniently as  
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